Coulomb’s Constant: The Electric Force’s Quantum Ruler






Coulomb’s Constant: The Electric Force’s Quantum Ruler


The Fundamental Architect of Electromagnetism: From Atoms to Lightning

I. Core Identity & Value

  • Symbol: \( k_e \) (also \( \frac{1}{4\pi\epsilon_0} \))
  • Value: \( 8.9875517923 \times 10^9 \text{N·m}^2\text{·C}^{-2} \) (2018 CODATA)
  • Role: Fundamental constant determining electrostatic force strength
  • Coulomb’s Law:
    \[ F = k_e \frac{|q_1 q_2|}{r^2} \]

    where \( F \) = electrostatic force, \( q \) = charges, \( r \) = separation distance

  • Fundamental Relation:
    \[ k_e = \frac{1}{4\pi\epsilon_0} = \frac{c^2 \mu_0}{4\pi} \]

    \( \epsilon_0 \) = vacuum permittivity, \( \mu_0 \) = vacuum permeability


II. Historical Discovery

Year Scientist Breakthrough
1785 Charles-Augustin de Coulomb Torsion balance experiments establishing inverse-square law
1856 Wilhelm Weber Precise measurements confirming \( k_e \)
1873 James Clerk Maxwell Integrated \( k_e \) into electromagnetic field theory
1905 Albert Einstein Revealed \( k_e \)’s invariance in special relativity
2019 SI Redefinition Fixed \( \mu_0 \), making \( k_e \) derived from \( c \)

Coulomb’s Apparatus: Used a torsion balance with charged spheres to measure forces with precision of ~0.01 N at 1 m separation.


III. Theoretical Significance

1. Electromagnetic Theory

  • Electric field definition:
    \[ \vec{E} = k_e \frac{q}{r^2} \hat{r} \]
  • Gauss’s Law integral form:
    \[ \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0} = 4\pi k_e Q_{\text{enc}} \]

2. Quantum Electrodynamics (QED)

  • Photon exchange amplitude proportional to \( k_e \)
  • Fine structure constant relation:
    \[ \alpha = \frac{k_e e^2}{\hbar c} \]

3. Relativistic Electrodynamics

  • Lorentz invariant in tensor formulation:
    \[ F^{\mu\nu} = \partial^{\mu}A^{\nu} – \partial^{\nu}A^{\mu} \]

IV. Dimensional Analysis & SI Redefinition

1. Dimensions

\[ [k_e] = \text{M L}^3 \text{T}^{-4} \text{I}^{-2} \]
(Mass·Length³·Time⁻⁴·Current⁻²)

2. 2019 SI System Impact

  • \( \mu_0 \) fixed at \( 4\pi \times 10^{-7} \text{H·m}^{-1} \) (exact)
  • \( k_e \) derived from \( c \) and \( \mu_0 \):
    \[ k_e = \frac{c^2 \mu_0}{4\pi} \]
  • Uncertainty reduced from \( 2.3 \times 10^{-10} \) to \( 10^{-10} \) via \( c \)-definition

V. Applications Across Scales

Scale System Role of \( k_e \)
Quantum Atomic structure Electron-nucleus binding: \( E = -k_e \frac{e^2}{r} \)
Molecular Chemical bonds Ionic bond energy calculation
Macroscopic Capacitors \( C = 4\pi\epsilon_0 R \) (spherical capacitor)
Astrophysical Stellar plasmas Debye shielding length: \( \lambda_D = \sqrt{\frac{\epsilon_0 k_B T}{e^2 n}} \)

VI. Experimental Measurements

1. Classical Methods

  • Coulomb torsion balance (original method)
  • Capacitance comparison with known geometries

2. Quantum Standards

  • Quantum Hall effect:
    \[ R_K = \frac{h}{e^2} \]
  • Josephson effect voltage standard
  • Atomic recoil measurements
Current precision: \( \delta k_e / k_e \approx 1.5 \times 10^{-10} \)

VII. Fundamental Questions

1. Why This Value?

  • Determined by electromagnetic vacuum properties
  • No theory predicts absolute value – set by measurement

2. Cosmological Constancy

  • Quasar spectra tests: \( |\Delta k_e / k_e| < 10^{-7} \) over cosmic time
  • Oklo natural reactor constraints

3. Relation to Gravity

Electrostatic-to-gravitational force ratio: \( \frac{F_e}{F_g} = k_e \frac{q_1 q_2}{G m_1 m_2} \approx 10^{42} \) for protons

“Coulomb’s constant is the silent conductor orchestrating the cosmic electromagnetic symphony – from atomic bonds to lightning storms.”

– Inspired by Richard Feynman


References

  1. Coulomb, C.A. (1785). “Premier Mémoire sur l’Électricité et le Magnétisme”
  2. Maxwell, J.C. (1873). “A Treatise on Electricity and Magnetism”
  3. Mohr, P.J., Taylor, B.N. (2005). “CODATA Recommended Values” (Rev. Mod. Phys.)
  4. Wood, B.M. (2014). “Precision Measurement of \( k_e \)” (J. Phys. Chem. Ref. Data)
  5. Feynman, R.P. (1964). “The Feynman Lectures on Physics” (Vol. II)
  6. SI Brochure (2019). “Redefinition of SI Base Units”



Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top